Correct Answer - Option 2 : (p ∨ q) ∨ (p ∨ ~q)
A tautology is a proposition that is always true.
p
|
q
|
~p
|
~q
|
p ∧ q
|
p ∨ q
|
p ∨ ~q
|
P ∧ ~q
|
~p ∨ ~q
|
T
|
T
|
F
|
F
|
T
|
T
|
T
|
F
|
F
|
T
|
F
|
F
|
T
|
F
|
T
|
T
|
T
|
T
|
F
|
T
|
T
|
F
|
F
|
T
|
F
|
F
|
T
|
F
|
F
|
T
|
T
|
F
|
F
|
T
|
F
|
T
|
Option (a):
p ∧ q
|
p ∧ ~q
|
(p ∧ q) ∨ (p ∧ ~q)
|
T
|
F
|
T
|
F
|
T
|
T
|
F
|
F
|
F
|
F
|
F
|
F
|
Option (b):
(p ∨ q)
|
(p ∨ ~q)
|
(p ∨ q) ∨ (p ∨ ~q)
|
T
|
T
|
T
|
T
|
T
|
T
|
T
|
F
|
T
|
F
|
T
|
T
|
Option (c):
(p ∨ q)
|
(p ∨ ~q)
|
(p ∨ q) ∧ (p ∨ ~q)
|
T
|
T
|
T
|
T
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
F
|
Option (d):
(p ∨ q)
|
(~p ∨ ~q)
|
(p ∨ q) ∧ (~p ∨ ~q)
|
T
|
F
|
F
|
T
|
T
|
T
|
T
|
T
|
T
|
F
|
T
|
F
|
From the given options, the table in option (b) is always true.
Thus, the option (b) is tautology.