Correct Answer - Option 1 : p ∧ q
From question, the Boolean expression given is:
~(p ⇒ (~q))
The truth table for the above expression is given below:
p
|
q
|
~q
|
P ⇒ (~q)
|
~(p ⇒ (~q))
|
T
|
T
|
F
|
F
|
T
|
T
|
F
|
T
|
T
|
F
|
F
|
T
|
F
|
T
|
F
|
F
|
F
|
T
|
T
|
F
|
Now, we need to consider the options:
Option (a) p ∧ q:
p
|
q
|
P ∧ q
|
T
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
F
|
F
|
F
|
F
|
Option (b) q ⇒ ~p:
p
|
q
|
~p
|
q ⇒ ~p
|
T
|
T
|
F
|
F
|
T
|
F
|
F
|
F
|
F
|
T
|
T
|
T
|
F
|
F
|
T
|
T
|
Option (c) p ∨ q:
p
|
q
|
P ∨ q
|
T
|
T
|
T
|
T
|
F
|
T
|
F
|
T
|
T
|
F
|
F
|
F
|
Option (d) (~p) ⇒ q:
p
|
q
|
~p
|
(~p) ⇒ q
|
T
|
T
|
F
|
T
|
T
|
F
|
F
|
T
|
F
|
T
|
T
|
T
|
F
|
F
|
T
|
F
|
On comparing the truth values of expression and truth values in options. The truth values in option is same and option (a) is the correct answer.