Correct Answer - Option 2 : 6
Projection of \(\vec b{\rm{\;on\;}}\vec a = \frac{{\vec b\cdot\vec a}}{{\left| {\vec a} \right|}} = \frac{{{b_1} + {b_2} + 2}}{4}\)
According to the question,
\(\frac{{{b_1} + {b_2} + 2}}{2} = \sqrt {1 + 1 + 2} = 2\)
⇒ b1 + b2 = 2 ....(1)
Since, \(\vec a + \vec b{\rm{\;is\;perpendicular\;to\;}}\vec c\).
Hence, \(\vec a.\vec c + \vec b.\vec c = 0\)
⇒ 8 + 5b1 + b2 + 2 = 0 ....(2)
From (1) and (2)
b1 = – 3, b2 = 5
\(\Rightarrow \vec b = - 3\hat i + 5{\rm{\hat j}} + \sqrt 2 \widehat {{\rm{k}}}\)
\(\Rightarrow \left| {\vec b} \right| = \sqrt {{3^2} + {5^2} + {{\left( {\sqrt 2 } \right)}^2}}\)
\(\left| {\vec b} \right| = \sqrt {9 + 25 + 2} = 6\)