Correct Answer - Option 2 : √5
Variance is given by,
\({σ ^2} = \frac{1}{n}\mathop \sum \limits_{i = 1}^n x_i^2 - {\left( {\frac{1}{n}\mathop \sum \limits_{i = 1}^n {x_i}} \right)^2}\)
\({σ ^2} = \frac{1}{n}A - \frac{1}{{{n^2}}}{B^2}\) ----(1)
Here, \(A = \mathop \sum \limits_{i = 1}^n x_i^2{\rm{\;and\;}}B = \mathop \sum \limits_{i = 1}^n {x_i}\)
\(\because \underset{i=1}{\overset{n}{\mathop \sum }}\,{{\left( {{x}_{i}}+1 \right)}^{2}}=9n\)
⇒ A + n + 2B = 9n
⇒ A + 2B = 8n ----(2)
\(\because ~\underset{i=1}{\overset{n}{\mathop \sum }}\,{{\left( {{x}_{i}}-1 \right)}^{2}}=5n\)
⇒ A + n – 2B = 5n
⇒ A – 2B = 4n ----(3)
Solving (2) and (3), we get
⇒ 2A = 12n
\(\Rightarrow A=\frac{12n}{2}=6n\)
Put A = 6n in equation (3)
⇒ 6n – 2B = 4n
⇒ – 2B = 4n – 6n = – 2n
⇒ B = n
Substitute A = 6n, B = n in equation (1), we get
\(\Rightarrow {{σ }^{2}}=\frac{1}{n}\times 6n-\frac{1}{{{n}^{2}}}\times {{n}^{2}}\)
= 6 – 1 = 5
∴ Standard deviation, σ = √5