Correct Answer - Option 3 :
\({\sin ^{ - 1}}\mathop {\lim }\limits_{n \to \infty } \mathop \sum \limits_{r - 1}^n \left( {\frac{2}{r} - \frac{2}{{r\left( {r + 1} \right)}}} \right)\)
n = 1, q = 30°
a sin = nl
a sin 30 = 1λ ⇒ a = 2λ. ...(1)
For 1st secondary maximum
a sin θ = 3 d/2
\(\left( {\frac{1}{2} - \frac{1}{3}} \right)\) ...(2)
putting the value of a in eq (1) and eq (2)
\(\frac{{p_1^2}}{{{a^2}}} + \frac{{p_2^2}}{{{b^2}}}\)
\(\sqrt {10} \)
\(\sqrt 2 \)
Therefore, the correct answer is (C).