Concept:
For a helical spring, maximum shear stress developed in the wire,
\({τ _{shear}} = \frac{{8WD}}{{\pi {d^3}}} {{\;\;\;\;\;}} \ldots \left( 1 \right)\)
Where,
D = Mean coil diameter, d = Wire diameter, W = Axial load
Calculation:
Given:
τmax1 = 24 MPa, d2 = 2d1, D2 = 2D1
By using equation (1),
\(\Rightarrow \tau_{shear2} = \frac{{8WD_2}}{{\pi {{\left( {d_2} \right)}^3}}} \)
\(\Rightarrow \frac{τ _{2}}{\tau_1} = \frac{{8WD_2}}{{\pi {d_2^3}}}\times\frac{{\pi {d_1^3}}}{{8WD_1}} \)
\(\Rightarrow \frac{τ _{2}}{\tau_1} = \frac{{D_2}}{{ {D_1}}}\times\left(\frac{{{d_1}}}{{d_2}} \right)^3\)
\(\Rightarrow \frac{τ _{2}}{\tau_1} = \frac{{2D_1}}{{ {D_1}}}\times\left(\frac{{{d_1}}}{{2d_1}} \right)^3=\frac{1}{4}\)
\(\Rightarrow \tau_{shear2} = \frac{\tau_{shear1}}{4} = \frac{24}{4} = 6 \ MPa\;\)