Correct Answer - Option 2 : 2
Concept:
When two points (x1, y1. z1) and (x1, y1. z2) are mentioned find the relation in terms of the third variable in terms of x,y, and z:
\(\dfrac{{{{x}} - x_1}}{{x_2 - x_1}} = \dfrac{{{{y}} - y_1}}{{y_2 - y_1}} = \dfrac{{{{z}} - z_1}}{{z_2 - z_1}} = {{t}}\)
Put the value of z,y, and z and use the end-points of one variable.
Calculation:
Given:
\({\rm{I}} = \smallint \left( {2{\rm{x}}{{\rm{y}}^2}{\rm{dx}} + 2{{\rm{x}}^2}{\rm{ydy}} + {\rm{dz}}} \right)\), A (0, 0, 0) and B(1, 1, 1).
Equation of line i.e. path
\( \frac{{{\rm{x}} - 0}}{{1 - 0}} = \frac{{{\rm{y}} - 0}}{{1 - 0}} = \frac{{{\rm{z}} - 0}}{{1 - 0}} = {\rm{t}}
\)
\( \therefore {\rm{\;x\;}} = {\rm{\;y\;}} = {\rm{\;z\;}} = {\rm{\;t\;and\;t\;}}:{\rm{\;}}0{\rm{\;}} \to {\rm{\;}}1\)
\( \therefore {\rm{I}} = \mathop \smallint \limits_0^1 \left( {2{{\rm{t}}^3}{\rm{dt}} + 2{{\rm{t}}^3}{\rm{dt}} +
{\rm{dt}}} \right) \)
\(= 4 \cdot \left[ {\frac{{{{\rm{t}}^4}}}{4}} \right]_0^1 + \left[ {\rm{t}} \right]_0^1 = 1 + 1 = 2\)
\(
\therefore \smallint \left( {2{\rm{x}}{{\rm{y}}^2}{\rm{dx}} + 2{{\rm{x}}^2}{\rm{ydy}} + {\rm{dz}}} \right) = 2 \)