Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
109 views
in Calculus by (115k points)
closed by
The value of integral \(\mathop \smallint \limits_0^2 \mathop \smallint \limits_0^{\rm{\ \ \ \ x}} {{\rm{e}}^{{\rm{x}} + {\rm{y}}}}{\rm{dydx}}\) is
1. \(\frac{1}{2}\left( {{\rm{e}} - 1} \right)\)
2. \( \frac{1}{2}{\left( {{{\rm{e}}^2} - 1} \right)^2}\)
3. \(\frac{1}{2}\left( {{{\rm{e}}^2} - {\rm{e}}} \right)\)
4. \(\frac{1}{2}{\left( {{\rm{e}} - \frac{1}{{\rm{e}}}} \right)^2}\)

1 Answer

0 votes
by (152k points)
selected by
 
Best answer
Correct Answer - Option 2 : \( \frac{1}{2}{\left( {{{\rm{e}}^2} - 1} \right)^2}\)

\(\mathop \smallint \limits_0^2 \mathop \smallint \limits_0^{\rm{x}} {{\rm{e}}^{{\rm{x}} + {\rm{y}}}}{\rm{dydx}} = \mathop \smallint \limits_0^2 {{\rm{e}}^{\rm{x}}}\left( {\mathop \smallint \limits_0^{\rm{x}} {{\rm{e}}^{\rm{y}}}{\rm{dy}}} \right){\rm{dx}}\)

\(= \mathop \smallint \limits_0^2 {{\rm{e}}^{\rm{x}}}\left( {{{\rm{e}}^{\rm{y}}}} \right)_0^{\rm{x}}{\rm{dx}} = \mathop \smallint \limits_0^2 {{\rm{e}}^{\rm{x}}}\left( {{{\rm{e}}^{\rm{x}}} - 1} \right){\rm{dx}}\)

\(= \mathop \smallint \limits_0^2 \left( {{{\rm{e}}^{2{\rm{x}}}}-{{\rm{e}}^{\rm{x}}}} \right){\rm{dx}} = \left( {\frac{{{{\rm{e}}^{2{\rm{x}}}}}}{2} - {{\rm{e}}^{\rm{x}}}} \right)_0^2\)

\(= \frac{{{{\rm{e}}^4}}}{2} - {{\rm{e}}^2} - \frac{1}{2} + 1 = \frac{{{{\rm{e}}^4}}}{2} - {{\rm{e}}^2} + \frac{1}{2}\)

\(= \frac{1}{2}\left( {{{\rm{e}}^4} - 2{{\rm{e}}^2} + 1} \right) = \frac{1}{2}{\left( {{{\rm{e}}^2} - 1} \right)^2}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...