Correct Answer - Option 4 : f(t) = 1 - e
-t
Concept:
If L-1{F(s)} = f(t)
then
L-1F(s – a) = eat.f(t) and L-1{F(s + a)} = e-at.f(t)
Calculation:
\(F\left( s \right) = \frac{1}{{s\left( {s + 1} \right)}} = \frac{A}{s} + \frac{B}{{\left( {s + 1} \right)}}\)
\(\frac{1}{{s\left( {s + 1} \right)}} = \frac{{A\left( {s + 1} \right) + B\left( s \right)}}{{s\left( {s + 1} \right)}}\)
A(s + 1) + B(s) = 1
Put s = 0, we get A = 1
Put s = -1, we get B = -1
\(F\left( s \right) = \frac{1}{{s\left( {s + 1} \right)}} = \frac{1}{s} + \frac{{ - 1}}{{\left( {s + 1} \right)}}\)
f(t) = L-1(s)
\(f\left( t \right) = {L^{ - 1}}\left( {\frac{1}{s} - \frac{1}{{s + 1}}} \right)\)
f(t) = e0t – e-t \(\left\{\because {{L^{ - 1}}\left( {\frac{1}{s}} \right) = 1} \right\}\)
f(t) = 1 – e-t