Correct Answer - Option 4 :
\(\frac{{{\rm{s}} + 2}}{{{{\left( {{\rm{s}} + 2} \right)}^2} + 16}}\)
Concept:
If L{f(t)} = F(s), then
- L{eat f(t)} = F(s – a)
- L{e-at f(t)} = F(s + a)
Calculation:
\(L\left\{ {\cos 4t} \right\} = \frac{s}{{{s^2} + {4^2}}}\)
\(\therefore {\rm{L}}\left\{ {{{\rm{e}}^{ - 2{\rm{t}}}}\cos 4{\rm{t}}} \right\} = \frac{{{\rm{s}} + 2}}{{{{\left( {{\rm{s}} + 2} \right)}^2} + {4^2}}}\)
L{e-2t cos 4t} \(= \frac{{{\rm{s}} + 2}}{{{{\left( {{\rm{s}} + 2} \right)}^2} + 16}}\)