Correct Answer - Option 3 :
\(\frac{{{{\rm{e}}^{ - {\rm{as}}}} - {{\rm{e}}^{ - {\rm{bs}}}}}}{{\rm{s}}}\)
Given \({\rm{f}}\left( {\rm{t}} \right) = \begin{array}{*{20}{c}}
1\\
0
\end{array}{\rm{\;}}\begin{array}{*{20}{c}}
{{\rm{\;}}:{\rm{\;a}} \le {\rm{t}} \le {\rm{b}}}\\
{{\rm{\;\;}}:{\rm{otherwise}}}
\end{array}\)
\(\begin{array}{l}
{\rm{L}}\left\{ {{\rm{f}}\left( {\rm{t}} \right)} \right\} = \mathop \smallint \limits_{ - \infty }^\infty {{\rm{e}}^{ - {\rm{st}}}}{\rm{f}}\left( {\rm{t}} \right){\rm{dt}}\\
= \mathop \smallint \limits_{ - \infty }^{\rm{a}} {{\rm{e}}^{ - {\rm{st}}}}{\rm{f}}\left( {\rm{t}} \right) + \mathop \smallint \limits_{\rm{a}}^{\rm{b}} {{\rm{e}}^{ - {\rm{st}}}}{\rm{f}}\left( {\rm{t}} \right){\rm{dt}} + \mathop \smallint \limits_{\rm{b}}^\infty {{\rm{e}}^{ - {\rm{st}}}}{\rm{f}}\left( {\rm{t}} \right){\rm{dt}}\\
= 0 + \mathop \smallint \limits_{\rm{a}}^{\rm{b}} {{\rm{e}}^{ - {\rm{st}}}}{\rm{dt}} + 0\\
= \left. {\frac{{{{\rm{e}}^{ - {\rm{st}}}}}}{{ - {\rm{s}}}}} \right|_{\rm{a}}^{\rm{b}} = \frac{{ - 1}}{{\rm{s}}}\left[ {{{\rm{e}}^{ - {\rm{bs}}}} - {{\rm{e}}^{ - {\rm{as}}}}} \right]\\
= \frac{{{{\rm{e}}^{ - {\rm{as}}}} - {{\rm{e}}^{ - {\rm{bs}}}}}}{{\rm{s}}}
\end{array}\)