Correct Answer - Option 2 : A + B - 2 = 0
Concept:
sin2x + cos2x = 1
\(\rm \int sin x dx = -cosx \)
\(\rm \int cos x dx = sin x \)
Calculation:
We have \(\rm \int \sqrt{1 - sin 2x} \space dx\) = A sinx + B cosx + C
⇒ \(\rm \int (\sqrt{sin^{2}x + cos^{2}x - 2sinx cosx} )dx\) = A sinx + B cosx + C
⇒ \(\rm \int (\sqrt{(sinx - cosx)^{2}})dx\) = A sinx + B cosx + C
⇒ \(\rm \int (|(sinx - cosx)|)dx\) = A sinx + B cosx + C ----(i)
If 0 < x < \(\frac{\pi}{4}\), then sinx < cosx
⇒ |sinx - cosx| = -sinx + cosx -----(ii)
Now from (i) and (ii), we get
⇒ \(\rm \int (-\space sinx + cosx) \space dx\) = A sinx + B cosx + C
⇒ cosx + sinx + C = A sinx + B cosx + C
On comparing A = 1, B = 1 and C = 0
Hence, A + B - 2 = 0 is correct.