Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
100 views
in Calculus by (114k points)
closed by
Find the value of the \(\rm \int_{0}^{\frac{\pi}{2}}\frac{sinx}{sinx+cosx}dx\)
1. \(\frac{\pi}{4}\)
2. \(\frac{\pi}{3}\)
3. \(\frac{\pi}{2}\)
4. \(\frac{\pi}{6}\)

1 Answer

0 votes
by (115k points)
selected by
 
Best answer
Correct Answer - Option 1 : \(\frac{\pi}{4}\)

Concept:

The property of integration is:

\(\rm \int_{0}^{a}f(x)dx=\int_{0}^{a}f(a-x)dx\)

Calculation:

Given: \(\rm \int_{0}^{\frac{\pi}{2}}\frac{sinx}{sinx+cosx}dx\)

Let \(\rm I= \int_{0}^{\frac{\pi}{2}}\frac{sinx}{sinx+cosx}\ dx ....(1)\)

As we know that, \(\rm \int_{0}^{a}f(x)dx=\int_{0}^{a}f(a-x)dx\)

\(\rm \Rightarrow I= \int_{0}^{\frac{\pi}{2}}\frac{sinx}{sinx+cosx}dx= \int_{0}^{\frac{\pi}{2}}\frac{cosx}{sinx+cosx}dx....(2)\)

By adding equation (1) and (2), we get

\(\rm \Rightarrow 2I= \int_{0}^{\frac{\pi}{2}}\frac{sinx}{sinx+cosx}dx+ \int_{0}^{\frac{\pi}{2}}\frac{cosx}{sinx+cosx}dx= \int_{0}^{\frac{\pi}{2}}\frac{sinx+cosx}{sinx+cosx}dx=\int_{0}^{\frac{\pi}{2}}dx\)

\(\rm \Rightarrow 2I=\int_{0 }^{\frac{\pi}{2}} dx=\left [ x \right ]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}\)

\(\rm \Rightarrow I=\frac{\pi}{4}\)

Hence, the correct option is 1.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...