Correct Answer - Option 4 :
\(\frac{3}{2}\)
Formula used:
Multiplication matrix:
\(\rm \begin{bmatrix} a & b\\ c & d \end{bmatrix} \times \begin{bmatrix} w & x\\ y & z \end{bmatrix} = \begin{bmatrix} aw + by & ax + bz\\ cw + dy & cx + dz \end{bmatrix}\)
Identity matrix:
An identity matrix is a given square matrix of any order which contains on its main diagonal elements with a value of one, while the rest of the matrix elements are equal to zero.
I = \(\rm \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \)
Calculation:
\(I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
⇒ \(I^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
\(A = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}\)
⇒ A2 = \( \begin{bmatrix} -4 & 0 \\ 0 & -4 \end{bmatrix}\)
According to question,
(mI + nA)2 = A
⇒ m2I2 + n2A2 + 2mnA = A
⇒ m2I2 + n2A2 = A(1 - 2mn)
⇒ m2 \(\rm \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\) + n2 \( \rm \begin{bmatrix} -4 & 0 \\ 0 & -4 \end{bmatrix}\) = (1 - 2mn)\(\rm \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}\) \(\rm \begin{bmatrix} m^{2} & 0\\ 0 & m^{2} \end{bmatrix} + \begin{bmatrix} -4n^{2} & 0\\ 0 & -4n^{2} \end{bmatrix} = \begin{bmatrix} 0 & 2(1-2mn)\\ -2(1-2mn) & 0 \end{bmatrix} \)
On equating on both sides
⇒ m2 - 4n2 = 0
⇒ m = 2n ----(1)
⇒ 2(1 - 2mn) = 0
⇒ 1 - 2mn = 0
⇒ mn = \(\rm \frac{1}{2}\)
From equation (1)
(2n)n = \(\rm \frac{1}{2}\)
⇒ n = \(\rm ± \frac{1}{2}\)
Taking positive sign
When n = \(\rm \frac{1}{2}\) then, m = 1
∴ m + n = 1 + \(\rm \frac{1}{2}\) = \(\rm \frac{3}{2}\)