Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
213 views
in Matrices by (108k points)
closed by
The inverse of a matrix A is given by \(\rm \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}\) What is A equal to?
1. \(\rm \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)
2. \(\rm \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}\)
3. \(\rm \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}\)
4. \(\rm \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}\)

1 Answer

0 votes
by (111k points)
selected by
 
Best answer
Correct Answer - Option 1 : \(\rm \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)

Concept:

The determinant of the inverse of an invertible matrix is the

inverse of the determinant:

det(A-1) = 1 / det(A)

Calculation:

A-1\(\begin{bmatrix} -\frac{1}{2} & -1 \\ \frac{-3}{2} & -2 \end{bmatrix}\)

Det(A-1) = (-2) × \(\rm \frac{-1}{2}\)  -(\(\rm \frac{-3}{2}\) × 1) = \(\rm \frac{-1}{2}\)

⇒ Det(A-1) = \(\rm \frac{-1}{2}\)

⇒ A = -2        [∵ det(A-1) = 1 / det(A)]

From the given option,

 \(\left| {\begin{array}{*{20}{c}} {1 }&{2 }\\ { 3 }&{4 } \end{array}} \right| \) = 4 - 6 = -2 

∴ Matrix A = \(\rm \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...