Correct Answer - Option 1 :
\(\rm \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)
Concept:
The determinant of the inverse of an invertible matrix is the
inverse of the determinant:
det(A-1) = 1 / det(A)
Calculation:
A-1 = \(\begin{bmatrix} -\frac{1}{2} & -1 \\ \frac{-3}{2} & -2 \end{bmatrix}\)
Det(A-1) = (-2) × \(\rm \frac{-1}{2}\) -(\(\rm \frac{-3}{2}\) × 1) = \(\rm \frac{-1}{2}\)
⇒ Det(A-1) = \(\rm \frac{-1}{2}\)
⇒ A = -2 [∵ det(A-1) = 1 / det(A)]
From the given option,
\(\left| {\begin{array}{*{20}{c}} {1 }&{2 }\\ { 3 }&{4 } \end{array}} \right| \) = 4 - 6 = -2
∴ Matrix A = \(\rm \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)