Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
311 views
in Matrices by (72.8k points)
closed by
If \(\rm A=\begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 1 \\\ 0 & -2 & 4 \end{bmatrix}\) and 6A-1 = A2 + cA + dI. where A-1 is inverse of A, I is the identity matrix then (c, d) is
1. (-6, 11)
2. (6, -11)
3. (11, -6)
4. (6, 11)

1 Answer

0 votes
by (121k points)
selected by
 
Best answer
Correct Answer - Option 1 : (-6, 11)

Concept:

Let A be any square matrix.

Characteristic equation of the matrix is given by: det (A - λI) = 0

 

Calculations:

Given matrix is \(\rm A=\begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 1 \\\ 0 & -2 & 4 \end{bmatrix}\)

A - λI = \(=\begin{bmatrix} 1 - λ & 0 & 0 \\\ 0 & 1- λ & 1 \\\ 0 & -2 & 4- λ \end{bmatrix}\)

Characteristic equation is det (A - λI) = 0

⇒ (1 - λ) × [(1 - λ)(4 - λ) + 2] = 0

⇒ (1 - λ) × [4 - 5λ + λ2 + 2] = 0

⇒ (1 - λ) × [6 - 5λ + λ2] = 0

⇒ 6 - 5λ + λ2 - 6λ + 5λ2 - λ3 = 0

⇒ λ3 - 6λ2 + 11λ - 6 = 0 

⇒ λ3 - 6λ2 + 11λ = 6

⇒ λ(λ2 - 6λ + 11) = 6

⇒ (λ2 - 6λ + 11) = 6λ-1

Put λ = A

⇒ (A2 - 6A + 11) = 6A-1

Given: 6A-1 = A2 + cA + dI

So, A2 + cA + dI = A2 - 6A + 11

Therefore c = -6 and d = 11

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...