Correct Answer - Option 1 : (-6, 11)
Concept:
Let A be any square matrix.
Characteristic equation of the matrix is given by: det (A - λI) = 0
Calculations:
Given matrix is \(\rm A=\begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 1 \\\ 0 & -2 & 4 \end{bmatrix}\)
A - λI = \(=\begin{bmatrix} 1 - λ & 0 & 0 \\\ 0 & 1- λ & 1 \\\ 0 & -2 & 4- λ \end{bmatrix}\)
Characteristic equation is det (A - λI) = 0
⇒ (1 - λ) × [(1 - λ)(4 - λ) + 2] = 0
⇒ (1 - λ) × [4 - 5λ + λ2 + 2] = 0
⇒ (1 - λ) × [6 - 5λ + λ2] = 0
⇒ 6 - 5λ + λ2 - 6λ + 5λ2 - λ3 = 0
⇒ λ3 - 6λ2 + 11λ - 6 = 0
⇒ λ3 - 6λ2 + 11λ = 6
⇒ λ(λ2 - 6λ + 11) = 6
⇒ (λ2 - 6λ + 11) = 6λ-1
Put λ = A
⇒ (A2 - 6A + 11) = 6A-1
Given: 6A-1 = A2 + cA + dI
So, A2 + cA + dI = A2 - 6A + 11
Therefore c = -6 and d = 11