Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
132 views
in Matrices by (239k points)
closed by
The inverse of the matrix \(\rm \begin{bmatrix} 2+3i & -i\\ i & 2-3i \end{bmatrix}\)is
1. \( \frac{1}{12}\begin{bmatrix} 2-3i & i\\ -i & -2+3i \end{bmatrix}\)
2. \( \frac{1}{12}\begin{bmatrix} 2-3i & i\\ -i & 2+3i \end{bmatrix}\)
3. \( \frac{1}{12}\begin{bmatrix} 2+3i & i\\ -i & 2-3i \end{bmatrix}\)
4. \( \frac{1}{12}\begin{bmatrix} 2-3i & -i\\ i & 2+3i \end{bmatrix}\)

1 Answer

0 votes
by (237k points)
selected by
 
Best answer
Correct Answer - Option 2 : \( \frac{1}{12}\begin{bmatrix} 2-3i & i\\ -i & 2+3i \end{bmatrix}\)

Concept:

For a 2 x 2 matrix there is a short-cut formula for inverse as given below

\(\rm {\begin{bmatrix} a & & b\\ c& & d \end{bmatrix}}^{-1} = \frac{1}{(ad-bc)}\begin{bmatrix} d & & -b\\ -c& & a \end{bmatrix}\)

Calculation:

A we know that inverse of matrix \(\rm {\begin{bmatrix} a & & b\\ c& & d \end{bmatrix}}^{-1} = \frac{1}{(ad-bc)}\begin{bmatrix} d & & -b\\ -c& & a \end{bmatrix}\)

⇒ \({\begin{bmatrix} 2+3i & -i\\ i & 2-3i \end{bmatrix}}^{-1}= \frac{1}{(2+3i)(2-3i)-1}\begin{bmatrix} 2-3i & i\\ -i & 2+3i \end{bmatrix}\)

⇒ \({\begin{bmatrix} 2+3i & -i\\ i & 2-3i \end{bmatrix}}^{-1}= \frac{1}{4+9-1}\begin{bmatrix} 2-3i & i\\ -i & 2+3i \end{bmatrix}\)

⇒ \({\begin{bmatrix} 2+3i & -i\\ i & 2-3i \end{bmatrix}}^{-1}= \frac{1}{12}\begin{bmatrix} 2-3i & i\\ -i & 2+3i \end{bmatrix}\)

Hence, option 2 is correct.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...