Correct Answer - Option 2 :
\(\begin{bmatrix} -1 & -2 \\\ -7 & -13 \end{bmatrix}\)
Concept:
Two matrices may be added or subtracted only if they have the same dimension; that is, they must have the same number of rows and columns.
Addition or subtraction is accomplished by adding or subtracting corresponding elements.
Calculations:
Given, \(A=\begin{bmatrix} -1 & 2 \\\ 3 & 4 \end{bmatrix} \ \text{and} \;\; \rm B = \ \begin{bmatrix} 3 & -2 \\\ 1 & 5 \end{bmatrix} \ \)
Consider, 2A + B + X = 0
⇒ \(\rm 2\begin{bmatrix} -1 & 2 \\\ 3 & 4 \end{bmatrix} + \ \begin{bmatrix} 3 & -2 \\\ 1 & 5 \end{bmatrix} \ \) + X = \(\begin{bmatrix} 0 & 0\\ 0 &0 \end{bmatrix}\)
Two matrices may be added or subtracted only if they have the same dimension; that is, they must have the same number of rows and columns. Addition or subtraction is accomplished by adding or subtracting corresponding elements.
⇒ \(\rm \begin{bmatrix} 1 & 2 \\\ 7 & 13 \end{bmatrix} \ \) + X = \(\begin{bmatrix} 0 & 0\\ 0 &0 \end{bmatrix}\)
⇒ X = \(\begin{bmatrix} 0 & 0\\ 0 &0 \end{bmatrix}\) - \(\rm \begin{bmatrix} 1 & 2 \\\ 7 & 13 \end{bmatrix} \ \)
⇒ X = \(\rm \begin{bmatrix} -1 & -2 \\\ - 7 & -13 \end{bmatrix} \ \)