Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
125 views
in Matrices by (72.8k points)
closed by

Find a matrix X such that 2A + B + X = 0 , where

\(A=\begin{bmatrix} -1 & 2 \\\ 3 & 4 \end{bmatrix} \ \text{and} \;\rm B =\ \begin{bmatrix} 3 & -2 \\\ 1 & 5 \end{bmatrix} \ ?\)


1. \(\begin{bmatrix} 1 & 2 \\\ 7 & 13 \end{bmatrix}\)
2. \(\begin{bmatrix} -1 & -2 \\\ -7 & -13 \end{bmatrix}\)
3. \(\begin{bmatrix} 13 & 2 \\\ 7 & 1 \end{bmatrix}\)
4. \(\begin{bmatrix} -13 & -2 \\\ -7 & -1 \end{bmatrix}\)

1 Answer

0 votes
by (121k points)
selected by
 
Best answer
Correct Answer - Option 2 : \(\begin{bmatrix} -1 & -2 \\\ -7 & -13 \end{bmatrix}\)

Concept:

Two matrices may be added or subtracted only if they have the same dimension; that is, they must have the same number of rows and columns. 

Addition or subtraction is accomplished by adding or subtracting corresponding elements.

 

Calculations:

Given, \(A=\begin{bmatrix} -1 & 2 \\\ 3 & 4 \end{bmatrix} \ \text{and} \;\; \rm B = \ \begin{bmatrix} 3 & -2 \\\ 1 & 5 \end{bmatrix} \ \)

Consider, 2A + B + X = 0

⇒ \(\rm 2\begin{bmatrix} -1 & 2 \\\ 3 & 4 \end{bmatrix} + \ \begin{bmatrix} 3 & -2 \\\ 1 & 5 \end{bmatrix} \ \) + X = \(\begin{bmatrix} 0 & 0\\ 0 &0 \end{bmatrix}\)

Two matrices may be added or subtracted only if they have the same dimension; that is, they must have the same number of rows and columns. Addition or subtraction is accomplished by adding or subtracting corresponding elements.

⇒ \(\rm \begin{bmatrix} 1 & 2 \\\ 7 & 13 \end{bmatrix} \ \) + X = \(\begin{bmatrix} 0 & 0\\ 0 &0 \end{bmatrix}\)

⇒ X = \(\begin{bmatrix} 0 & 0\\ 0 &0 \end{bmatrix}\) - \(\rm \begin{bmatrix} 1 & 2 \\\ 7 & 13 \end{bmatrix} \ \)

⇒ X = \(\rm \begin{bmatrix} -1 & -2 \\\ - 7 & -13 \end{bmatrix} \ \)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...