Correct Answer - Option 1 : -4
Formula used:
\(\rm A = \begin{bmatrix} a & b & c\\ d & e & f\\ g & h & i \end{bmatrix}\)
det(A) = a(ei - hf) - b(di - gf) + c(dh - eg)
Calculation:
\(\begin{vmatrix} a & -b & a - b - c\\ -a & b & -a + b - c\\ -a & -b & -a - b + c \end{vmatrix} = kabc \)
R2 → R2 + R1
\(\begin{vmatrix} a & -b & a - b - c\\ 0 & 0 & - 2c\\ -a & -b & -a - b + c \end{vmatrix} = kabc \)
⇒ a[-(-2c)(-b)] - (-b)[-(-2c)(-a)]
⇒ - 2abc - 2abc + (a - b - c ) × 0 = kabc
⇒ - 4abc = kabc
⇒ k = - 4
∴ The value of k is - 4