Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
1.7k views
in Determinants by (108k points)
closed by
If \(\rm \Delta = \begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}\) then what is \(\rm \begin{vmatrix} 3d + 5g & 4a + 7g & 6g\\ 3e + 5h & 4b + 7h & 6h\\ 3f + 5i & 4c + 7i & 6i \end{vmatrix}\) equal to?
1. Δ
2. 7Δ
3. 72Δ
4. -72Δ

1 Answer

0 votes
by (111k points)
selected by
 
Best answer
Correct Answer - Option 4 : -72Δ

Concept::

  • The interchange of any two rows (or columns) of the determinant changes its sign.
  • The determinant remains unaltered if its rows are changed into columns and the columns into rows.

 

Calculation:

\(\Delta = \begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}\)

\(A = \begin{vmatrix} 3d + 5g & 4a + 7g & 6g\\ 3e + 5h & 4b + 7h & 6h\\ 3f + 5i & 4c + 7i & 6i \end{vmatrix}\)

\(⇒ A = 6\begin{vmatrix} 3d + 5g & 4a + 7g & g\\ 3e + 5h & 4b + 7h & h\\ 3f + 5i & 4c + 7i & i \end{vmatrix}\)

C1 → C1 - 5C3, C2 → C2 - 7C3

 \(A = 6\begin{vmatrix} 3d & 4a & g\\ 3e & 4b & h\\ 3f & 4c& i \end{vmatrix}\)

\(A =6\times 3\times4 \begin{vmatrix} d & a & g\\ e & b & h\\ f & c& i \end{vmatrix}\)

Using the property of determinants

\(A =-72 \begin{vmatrix} a & b & c\\ d & e & f\\ g & h& i \end{vmatrix}\)

∴  A = -72Δ

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...