Correct Answer - Option 4 : 0.0001
Given:
Roots of x2 - 4x - log10N = 0 are real
Formula used:
Roots of quadratic equation ax2 + bx + c = 0 are real
if D ≥ 0 i.e b2 - 4ac ≥ 0
And lf logaN = x
Then N = ax
Calculation:
We have the quadratic equation x2 - 4x - log10N = 0
On comparing this equation with ax2 + bx + c = 0, we get
a = 1, b = -4 and c = - log10N
Now, According to the question
D = b2 - 4ac ≥ 0
⇒ (- 4)2 - 4 × 1 × (- log10N) ≥ 0
⇒ 16 + 4log10N ≥ 0
⇒ 4log10N ≥ -16
⇒ log10N ≥ - 4
⇒ N ≥ 10-4
⇒ N ≥ 0.0001
∴ The minimum value of N is 0.0001.