Correct Answer - Option 1 : σ
A = 2σ
B
Concept:
Bending stress is given by:
\(σ = \frac{{My}}{I}\)
Where M is bending moment y is the distance of fibre from the neutral axis and I is the moment of inertia of the cross-section.
Calculation:
Given:
Beam A = (b × b/2), Beam B = (b/2 × b)
\(σ = \frac{{My}}{I}=\frac{M}{Z}\;\)
Where, \(Z=\frac{I}{y}\) is known as sectional-modulus.
Thus for the same bending moment, the bending stress is inversely proportional to section modulus.
Section Modulus for Beam A:
\(Z_A=\frac{I}{y}\Rightarrow\frac{\frac{b\;\times\;\left(\frac{b}{2}\right)^3}{12}}{\frac{b}{2\;\times\;2}}=\frac{b^3}{24}\)
Section Modulus for Beam B:
\(Z_B=\frac{I}{y}\Rightarrow\frac{\frac{\left(\frac{b}{2}\right)\;\times\;b^3}{12}}{\frac{b}{2}}=\frac{b^3}{12}\)
\(\frac{σ_A}{σ_B}=\frac{Z_B}{Z_A}=\frac{\frac{b^3}{12}}{\frac{b^3}{24}}=2\)
∴ σA = 2σB