Correct Answer - Option 3 :
\(\frac{1}{1.12}\)
Concept:
The moment of resistance of a beam is given by:
M = σ × Z
where, M = Bending moment, σ = Bending stress,
Z = Section modulus = \(\frac{I}{A}\)
Calculation:
Given:
As all the two beams have the same allowable stress (σ), and same bending moment (M), therefore the section modulus (Z) of the two beams must be equal.
\({{\rm{Z}}_{\rm{s}}} = \frac{{{{\rm{a}}^3}}}{6}\)
where “a” is the side of a square beam
\({{\rm{Z}}_{\rm{c}}} = \frac{{\rm{\pi }}}{{32}}{{\rm{d}}^3}\)
Where “d” is the diameter of the circular beam.
Zs =Zc
\(\frac{{{a^3}}}{6} = \frac{{\rm{\pi }}}{{32}} \times {{\rm{d}}^3}\)
\({{\rm{a}}^3} = \frac{{3{\rm{\pi }}}}{{16}} \times {{\rm{d}}^3}\)
\({\rm{a}} = {\left( {\frac{{3{\rm{\pi }}}}{{16}}} \right)^{\frac{1}{3}}} \times {\rm{d}}\)
The weight of the beams is proportional to their cross-sectional area.
\(\frac{{{\rm{weight\;of\;the\;square\;beam}}}}{{{\rm{weight\;of\;circular\;beam}}}} = \frac{{{\rm{Area\;of\;square\;beam}}}}{{{\rm{Area\;of\;circular\;beam}}}}\)
\( \frac{{{\rm{weight\;of\;the\;square\;beam}}}}{{{\rm{weight\;of\;circular\;beam}}}} = \frac{{{{\rm{a}}^2}}}{{\frac{{\rm{\pi }}}{4}{{\rm{d}}^2}}} = \frac{4}{{\rm{\pi }}}{\left( {\frac{{\rm{a}}}{{\rm{d}}}} \right)^2} = \frac{4}{{\rm{\pi }}}{\left( {\frac{{3{\rm{\pi }}}}{{16}}} \right)^{\frac{2}{3}}} = \frac{1}{{1.12}}\)
The ratio of weights of the square beam to that of the circular beam is \(\frac{1}{{1.12}}\).