Correct Answer - Option 2 : 2 and 3
Concept:
Linearly dependence of Vectors: A set containing the vectors u1, u2, ....ur defined over a field F is said to be linearly dependent if scalars a1, a2, ....ar ∈ R (not all zero) such that,
⇒ a1 u1 + a2 u2 + ......+ ar ur = 0
In brief linearly dependent is written as 'L.D'.
Linear Independence of Vector: A set containing the vectors u1, u2, ....ur defined over a field F is said to be lineraly independent if it is not linearly dependent, I,e. if every equation of the form a1 u1 + a2 u2 + ......+ ar ur = 0 ⇒ ai = 0
Calculation:
Let u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1)
Also, a1 u1 + a2 u2 +.....+ar ur = 0
This gives (a1 , a2 , a3) = (0, 0 ,0)
⇒ a1 = 0, a2 = 0, a3 = 0
⇒ a1 + a2 + a3 = 0
This proves that the vectors u1, u2, u3 are linearly independent.
Similarly for (0, 1, 0), (1, 0, 1), (1, 1, 0)
Let u1 = (0, 1, 0), u2 = (1, 0, 1), u3 = (1, 1, 0)
⇒ (a2 + a3 , a1 + a3, a2) = 0
⇒ a1 = 0, a2 = 0, a3 = 0
⇒ a1 + a2 + a3 = 0
This proves that the vectors u1, u2, u3 are linearly independent.