Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2025 Foundation Course
NEET 2025 Foundation Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
178 views
in Algebra by (113k points)
closed by
For the operator T on R3 defined by T(x, y, z) = (x - y, 2x + 3y + 2z, x + y + 2z), all eigenvalues and a basis for each eigenspace as
1. λ1 = 1, (1, 1, -1); λ2 = 2, (2, 2, -1); λ3 = 3, (1, -2, -1)
2. λ1 = 1, (1, 0, -1); λ2 = 2, (2, -2, -1); λ3 = 3, (1, -2, -1)
3. λ1 = 1, (1, 0, 1); λ2 = 2, (2, -2, 1); λ3 = 3, (1, -2, -1)
4. λ1 = 1, (1, 0, -1); λ2 = 2, (2, 2, -1); λ3 = 3, (1, -2, 1)

1 Answer

0 votes
by (114k points)
selected by
 
Best answer
Correct Answer - Option 2 : λ1 = 1, (1, 0, -1); λ2 = 2, (2, -2, -1); λ3 = 3, (1, -2, -1)

Concept

The equation of the form \(| A - λ{I}|\) = 0 is called the characteristic equation where,

A is a square matrix 

\(λ\) is an eigen value and, 

I is an identity matrix, and the non-trivial solution of this equation are the eigen values.

The eigenspace is the space generated by the eigenvectors corresponding to the same eigenvalue - that is, the space of all vectors that can be written as a linear combination of those eigenvectors i.e, If \(λ\)  is any eigen value ,A is any square matrix, I is an identity matrix and X is any eigen vector then we have  | A - λI |.X = 0.

Calculation :

First ,we shall find all eigen values using the equation  | A - λI | = 0 .

we have T(x, y, z) = (x - y, 2x + 3y + 2z, x + y + 2z)

then the matrix form of this  can be written as \( \begin{bmatrix} {1} & {-1} & 0 \\[0.3em] 2& 3 & 2 \ \\[0.3em] 1 & 1 & 2 \\[0.3em] \end{bmatrix} \)= A (Say)

Consider,  ( A - λI ) = 0

⇒  \( \begin{bmatrix} {1} & {-1} & 0 \\[0.3em] 2& 3 & 2 \ \\[0.3em] 1 & 1 & 2 \\[0.3em] \end{bmatrix} \) - \(λ\) \( \begin{bmatrix} {1} & {0} & 0 \\[0.3em] 0& 1 & 0 \ \\[0.3em] 0 & 0 & 1 \\[0.3em] \end{bmatrix} \) = \( \begin{bmatrix} {0} \\[0.3em] 0 \\[0.3em] 0 \\[0.3em] \end{bmatrix} \)

⇒ \( \begin{bmatrix} {1-λ} & {-1} & 0 \\[0.3em] 2& 3-λ & 2 \ \\[0.3em] 1 & 1 & 2-λ \\[0.3em] \end{bmatrix}\) =  \( \begin{bmatrix} {0} \\[0.3em] 0 \\[0.3em] 0 \\[0.3em] \end{bmatrix} \)

\((1-λ)[(3-λ)(2-λ)-2]+1[(4-2λ)-2]+0 = 0\) 

⇒ \((1-λ)[λ^2-5λ+4]+2(1-λ) = 0\)

⇒ \((1-λ)[λ^2-5λ+6] = 0\)

So on solving the above quadratic equation we get the following eigen values 

⇒ \(λ_1=1,λ_2=2,λ_3=3\) .

So the corresponding eigen space of the three eigen values can be found by the equation |A - λI | .X = 0.

Let X = \( \begin{bmatrix} {x_1} \\[0.3em] x_2 \\[0.3em] x_3 \\[0.3em] \end{bmatrix}\) be an eigen vector.

Consider , 

 (A - λI). X= 0

corresponding to \(λ _1\) eigen value  we have ,

\( \begin{bmatrix} {1-λ_1} & {-1} & 0 \\[0.3em] 2& 3-λ_1 & 2 \ \\[0.3em] 1 & 1 & 2-λ_1 \\[0.3em] \end{bmatrix}\).\( \begin{bmatrix} {x_1} \\[0.3em] x_2 \\[0.3em] x_3 \\[0.3em] \end{bmatrix}\) = \( \begin{bmatrix} {0} \\[0.3em] 0 \\[0.3em] 0 \\[0.3em] \end{bmatrix} \) 

\( \begin{bmatrix} {1-1} & {-1} & 0 \\[0.3em] 2& 3-1 & 2 \ \\[0.3em] 1 & 1 & 2-1 \\[0.3em] \end{bmatrix}\)\( \begin{bmatrix} {x_1} \\[0.3em] x_2 \\[0.3em] x_3 \\[0.3em] \end{bmatrix}\) = \( \begin{bmatrix} {0} \\[0.3em] 0 \\[0.3em] 0 \\[0.3em] \end{bmatrix} \) 

\( \begin{bmatrix} {0} & {-1} & 0 \\[0.3em] 2& 2 & 2 \ \\[0.3em] 1 & 1 & 1 \\[0.3em] \end{bmatrix}\)\( \begin{bmatrix} {x_1} \\[0.3em] x_2 \\[0.3em] x_3 \\[0.3em] \end{bmatrix}\) = \( \begin{bmatrix} {0} \\[0.3em] 0 \\[0.3em] 0 \\[0.3em] \end{bmatrix} \) 

On doing matrix multiplication we get the following set of equations,

⇒ - x2 = 0

2x1 + 2x2 + 2x= 0  and 

 

Therefore x2 = 0  so we have x1+x3 = 0  i.e.  \(x_1\) and  \(x_3\) are dependent on each other.

so let x1 = 1  then,  x3 = -1

\(\therefore\) eigenspace corresponding to the eigen value λ1 = 1 is ( 1, 0, -1 )

Similarly, corresponding to  λ2 eigen value  we have,

\( \begin{bmatrix} {1-λ_2} & {-1} & 0 \\[0.3em] 2& 3-λ_2 & 2 \ \\[0.3em] 1 & 1 & 2-λ_2 \\[0.3em] \end{bmatrix}\).\( \begin{bmatrix} {x_1} \\[0.3em] x_2 \\[0.3em] x_3 \\[0.3em] \end{bmatrix}\) = \( \begin{bmatrix} {0} \\[0.3em] 0 \\[0.3em] 0 \\[0.3em] \end{bmatrix} \)

\( \begin{bmatrix} {1-2} & {-1} & 0 \\[0.3em] 2& 3-2 & 2 \ \\[0.3em] 1 & 1 & 2-2 \\[0.3em] \end{bmatrix}\).\( \begin{bmatrix} {x_1} \\[0.3em] x_2 \\[0.3em] x_3 \\[0.3em] \end{bmatrix}\) = \( \begin{bmatrix} {0} \\[0.3em] 0 \\[0.3em] 0 \\[0.3em] \end{bmatrix} \) 

\( \begin{bmatrix} {-1} & {-1} & 0 \\[0.3em] 2& 1 & 2 \ \\[0.3em] 1 & 1 & 0 \\[0.3em] \end{bmatrix}\).\( \begin{bmatrix} {x_1} \\[0.3em] x_2 \\[0.3em] x_3 \\[0.3em] \end{bmatrix}\) = \( \begin{bmatrix} {0} \\[0.3em] 0 \\[0.3em] 0 \\[0.3em] \end{bmatrix} \) 

On doing matrix multiplication we get the following set of equations,

⇒ -x- x2 = 0 

2x1 + x2 + 2x= 0  and

x1 + x2 = 0

Therefore x2 = - x1 i.e.   xand  x2 are dependent on each other.

so, let x1 = 2  then, x2 = - 2 

and  2x1 + x2 + 2x= 0

⇒ x3 = -1 

\(\therefore\) eigenspace corresponding to the eigen value  λ2 = 2 is ( 2, -2, -1).

Finally ,corresponding to  λ3  eigen value  we have,

\( \begin{bmatrix} {1-λ_3} & {-1} & 0 \\[0.3em] 2& 3-λ_3 & 2 \ \\[0.3em] 1 & 1 & 2-λ_3 \\[0.3em] \end{bmatrix}\).\( \begin{bmatrix} {x_1} \\[0.3em] x_2 \\[0.3em] x_3 \\[0.3em] \end{bmatrix}\) = \( \begin{bmatrix} {0} \\[0.3em] 0 \\[0.3em] 0 \\[0.3em] \end{bmatrix} \) 

\( \begin{bmatrix} {1-3} & {-1} & 0 \\[0.3em] 2& 3-3 & 2 \ \\[0.3em] 1 & 1 & 2-3 \\[0.3em] \end{bmatrix}\).\( \begin{bmatrix} {x_1} \\[0.3em] x_2 \\[0.3em] x_3 \\[0.3em] \end{bmatrix}\) = \( \begin{bmatrix} {0} \\[0.3em] 0 \\[0.3em] 0 \\[0.3em] \end{bmatrix} \) 

\( \begin{bmatrix} {-2} & {-1} & 0 \\[0.3em] 2& 0 & 2 \ \\[0.3em] 1 & 1 & -1 \\[0.3em] \end{bmatrix}\).\( \begin{bmatrix} {x_1} \\[0.3em] x_2 \\[0.3em] x_3 \\[0.3em] \end{bmatrix}\) = \( \begin{bmatrix} {0} \\[0.3em] 0 \\[0.3em] 0 \\[0.3em] \end{bmatrix} \) 

On doing matrix multiplication we get the following set of equations,

⇒2x- x2 = 0

2x1 + 2x3 = 0 

x+ x-x3 = 0

Therefore   x3 = - x i.e.  x1 and  x3 are dependent on each other.

Let x1 = 1 then x3 = -1 

and x1 + x2 - x= 0 

⇒ x= -2

\(\therefore\) eigenspace corresponding to the eigen value λ3 = 3   is (1,-2,-1) .

Hence, the correct answer is option 2)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...