Correct Answer - Option 4 : Greater than or equal to
\(\dfrac{64}{9}\)
Concept:
Arithmetic Mean ≥ Geometric Mean
AM ≥ GM
\(\frac{a~+~b~+~c}{3}≥ (abc)^\frac{1}{3}\)
(a3 + b3 + c3) = (a + b + c)(a2 + b2 + c2 – ab – bc – ca) + 3abc
Calculation:
Given:
a + b + c = 4, a3 + b3 + c3 = ?
\(\frac{a~+~b~+~c}{3}≥ (abc)^\frac{1}{3}\)
\(abc \leq (\frac{4}{3})^3\leq \frac{64}{27}\)
\(3abc \leq (\frac{4}{3})^3\leq \frac{64}{9}\)----- (1)
(a3 + b3 + c3) = (a + b + c)(a2 + b2 + c2 – ab – bc – ca) + 3abc
For, a = b = c, (a + b + c)(a2 + b2 + c2 – ab – bc – ca) = 0
As a, b, c are positive numbers,
The value of (a + b + c)(a2 + b2 + c2 – ab – bc – ca) > 0 ----(2)
∴ From (1) and (2)
(a3 + b3 + c3) = (a + b + c)(a2 + b2 + c2 – ab – bc – ca) + 3abc
(a3 + b3 + c3) ≥ \(\frac{64}{9}\)