Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
93 views
in Calculus by (113k points)
closed by
\(\rm \int_{0}^{\pi/2}\frac{ \sin x}{ \sin x + \cos x}dx\)  is equal to ? 
1. \(\rm \frac{\pi}{2}\)
2. 1
3. \(\rm \frac{\pi}{4}\)
4. 0

1 Answer

0 votes
by (114k points)
selected by
 
Best answer
Correct Answer - Option 3 : \(\rm \frac{\pi}{4}\)

Concept: 

Properties of definite integral:

\(\rm \int_{a}^{b}f(x)dx= \int_{a}^{b}f(a+b-x)dx\)

\(\rm \sin \left ( \frac{\pi}{2} -x\right )= \cos x\)

Calculation: 

I = \(\rm \int_{0}^{\pi/2}\frac{ \sin x}{ \sin x + \cos x}dx\)         ....(i)

Using identity , \(\rm \int_{a}^{b}f(x)dx= \int_{a}^{b}f(a+b-x)dx\) 
I = \(\rm \int_{0}^{\pi/2}\frac{\sin \left ( \frac{\pi}{2} -x\right )}{\sin \left ( \frac{\pi}{2}-x \right )+\cos\left ( \frac{\pi}{2}-x \right )}\)dx 

⇒ I = \(\rm \int_{0}^{\pi/2}\frac{ \cos x}{ \cos x + \sin x}dx\)    ....(ii)

On adding eqn. (i) and (ii) ,we get 

2I = \(\rm \int_{0}^{\pi/2}\frac{ \sin x+ \cos x}{ \sin x + \cos x}dx\) 

⇒ 2I = \(\rm \int_{0}^{\pi/2}dx\) 

⇒ 2I = \(\rm \frac{\pi}{2}\) 

I =  \(\rm \frac{\pi}{4}\) . 

The correct option is 3.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...