Correct Answer - Option 4 : 4PQ
we have (x + a)n
\({\left( {x + a} \right)^n} = {}_{}^n{C_0}{x^n} + {}_{}^n{C_1}{x^{n - 1}}{a^1} + {}_{}^n{C_2}{x^{n - 2}}{a^2} + {}_{}^n{C_3}{x^{n - 3}}{a^3} + \ldots + {}_{}^n{C_n}{a^n}\)
Sum of odd terms,
\(P = {}_{}^n{C_0}{x^n} + + {}_{}^n{C_2}{x^{n - 2}}{a^2} + ...\)
Sum of even terms,
\(Q = {}_{}^n{C_1}{x^{n - 1}}{a^1} + {}_{}^n{C_3}{x^{n - 3}}{a^3} ...\)
⇒ (x + a)n = P + Q (i)
⇒ (x - a)n = P - Q (ii)
squaring and subtracting equation (ii) from equation (i) we get.
(x + a)2n - (x - a)2n = (P + Q)2 - (P - Q)2
(x + a)2n - (x - a)2n = P2 + Q2 + 2PQ - (P2 + Q2 - 2PQ)
(x + a)2n - (x - a)2n = P2 + Q2 + 2PQ - P2 - Q2 + 2PQ
(x + a)2n - (x - a)2n = 4PQ