Correct Answer - Option 1 :
\(405\over256\)
Concept:
The binomial expansion of (a + b)n is
(a + b)n = \(\rm \sum_0^n {^nC_r a^rb^{n-r}}\)
Where any rth term T = \(\rm {^nC_r a^rb^{n-r}}\)
Calculation:
The expansion of \(\rm\left({x\over2}-{3\over x^2}\right)^{10}\) = \(\rm \sum_0^{10} {^{10}C_r \left({x\over2}\right)^{r}\left({-3\over x^2}\right)^{10-r}}\)
The rth term will be Tr = \(\rm {^{10}C_r \left({x\over2}\right)^{r}\left({-3\over x^2}\right)^{10-r}}\)
Tr = \(\rm {^{10}C_r \left({-3^{10-r}\over 2^{r}}\right)x^{r-2(10-r)}}\)
For the term has x4,
r - 2(10 - r) = 4
r - 20 + 2r = 4
3r = 24
r = 8
Now the coefficient of x4 is
C4 = \(\rm {^{10}C_r \left({-3^{10-r}\over 2^{r}}\right)}\)
Putting r = 8
C4 = \(\rm {^{10}C_8 \left({-3^{10-8}\over 2^{8}}\right)}\)
C4 = \(\rm {45 \left({9\over256}\right)}\)
C4 = \(\boldsymbol{405\over 256}\)