Correct Answer - Option 3 : 10
Given:
a2 + b2 + c2 = 2(6a – 8b + 12c) – 244
Formula used:
(x + y)2 = x2 + y2 + 2xy
(x – y)2 = x2 + y2 – 2xy
Calculation:
a2 + b2 + c2 = 2(6a – 8b + 12c) – 244
⇒ a2 + b2 + c2 = 12a – 16b + 24c – 244
⇒ a2 + b2 + c2 – 12a + 16b – 24c + 244 = 0
⇒ a2 – 12a + b2 +16b + c2 – 24c + 244 = 0
⇒ a2 – (2 × 6)a + b2 + (2 × 8)b + c2 – (2 × 12) c + 244 = 0
For perfect square add and subtract y2
⇒ a2 – (2 × 6)a + 62 – 62 + b2 + (2 × 8)b + 82 – 64 + c2 – (2 × 12) c + 122 – 122 + 244 = 0
⇒ (a – 6)2 + (b + 8)2 + (c – 12)2 – 244 + 244 = 0
⇒ (a – 6)2 + (b + 8)2 + (c – 12)2 = 0
Here,
a – 6 = 0
⇒ a = 6
b + 8 = 0
⇒ b = - 8
c – 12 = 0
⇒ c = 12
So, a + b + c
⇒ 6 – 8 + 12
⇒ 10
∴ The value of a + b + c is 10