Correct Answer - Option 3 :
\(\rm \frac{x}{2}-\frac{\sin 2x}{4} + c\)
Concept:
1 + cos 2x = 2cos2 x
1 - cos 2x = 2sin2 x
\(\rm \int \cos x\;dx = \sin x + c\)
Calculation:
I = \(\rm \int sin^2 x\;dx\)
= \(\rm \int \frac{1-\cos 2x}{2}\;dx\)
= \(\rm \frac{1}{2}\int (1-\cos 2x)\;dx\)
= \(\rm \frac{1}{2} \left[x-\frac{\sin 2x}{2} \right ] + c\)
= \(\rm \frac{x}{2}-\frac{\sin 2x}{4} + c\)