Correct Answer - Option 2 : 2sec
2 x tan x
Concept:
Suppose that we have two functions f(x) and g(x) and they are both differentiable.
- Chain Rule: \(\frac{{\rm{d}}}{{{\rm{dx}}}}\left[ {{\rm{f}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right)} \right] = {\rm{\;f'}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right){\rm{g'}}\left( {\rm{x}} \right)\)
- Product Rule: \(\frac{{\rm{d}}}{{{\rm{dx}}}}\left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{\;g}}\left( {\rm{x}} \right)} \right] = {\rm{\;f'}}\left( {\rm{x}} \right){\rm{\;g}}\left( {\rm{x}} \right) + {\rm{f}}\left( {\rm{x}} \right){\rm{\;g'}}\left( {\rm{x}} \right)\)
Formulas:
\(\rm\frac{d\tan x}{dx} = \sec^2 x\)
\(\rm\frac{d\sec x}{dx} =\sec x \tan x\)
\(\rm \frac{dx^{n}}{dx}= nx^{n-1}\)
Calculation:
We have to find the value of \(\rm \frac{d^2\tan x}{dx^2}\)
\(\rm \frac{d^2\tan x}{dx^2} = \frac{d}{dx} \left(\frac{d\tan x}{dx} \right )\)
\(\rm = \frac{d}{dx} \left(sec^2 x \right )\)
Apply chain rule, we get
\(\rm = \frac{d\sec^2 x}{d\sec x} × \frac{d\sec x}{dx}\)
= 2sec x . sec x tan x
= 2sec2 x tan x