Correct Answer - Option 1 : 7760
Given:
a and b are two positive real numbers such that a + b = 20 and ab = 4. We have to find the value of a3 + b3
Formula Used:
a3 + b3 = (a + b)3 – 3ab(a + b)
Calculation:
a3 + b3 = (a + b)3 – 3ab(a + b)
⇒ a3 + b3 = (20)3 – 3 × 4 × 20 [∵ Given a + b = 20 and ab = 4]
⇒ a3 + b3 = 20 × (202 – 12)
⇒ a3 + b3 = 20 × (400 – 12)
⇒ a3 + b3 = 20 × 388
⇒ a3 + b3 = 7760
∴ Value of a3 + b3 is 7760