Correct Answer - Option 3 : 1/2
Given:
1/√(5 – 2√6) = √A + √B
Concept Used:
(x + y)2 = x2 + y2 + 2xy
Calculations:
√(5 – 2√6) = √((√2)2 + (√3)2 – 2 × √2 × √3)
⇒ √(5 – 2√6) = √((√3) – √2))2
⇒ √(5 – 2√6) = √3 – √2
1/√(5 – 2√6) = 1/(√3 – √2)
On rationalizing, we get
1/(√3 – √2) × (√3 + √2)/(√3 + √2)
⇒ (√3 + √2)/(√3)2 – (√2)2
⇒ (√3 + √2) = √A + √B
On comparing, we get
A = 3, B = 2
Now, (A2 + B2)/26
Putting value of A and B in this expression,
⇒ (A2 + B2)/26 =(32 + 22)/26
⇒ (A2 + B2)/26 = 13/26
⇒ (A2 + B2)/26 = 1/2
∴ The value of (A2 + B2)/26 is 1/2.