The substances where nitrogen can exhibit oxidation states from –3 to +5 are listed in the following table.
Substance |
O.N. of nitrogen |
N2 |
0 |
N2O |
+1 |
N2H2 |
–1 |
NO |
+2 |
N2H4 |
–2 |
N2O3 |
+3 |
NH3 |
–3 |
NO2 |
+4 |
N2O5 |
+5 |
8. While sulphur dioxide and hydrogen peroxide can act as oxidising as well as reducing agents in their reactions, ozone and nitric acid act only as oxidants. Why?
Answer:
In sulphur dioxide (SO2), the oxidation number (O.N.) of S is +4 and the range of the O.N. that S can have is from +6 to –2.
Therefore, SO2 can act as an oxidising as well as a reducing agent.
In hydrogen peroxide (H2O2), the O.N. of O is –1 and the range of the O.N. that O can have is from 0 to –2. O can sometimes also attain the oxidation numbers +1 and +2. Hence, H2O2 can act as an oxidising as well as a reducing agent.
In ozone (O3), the O.N. of O is zero and the range of the O.N. that O can have is from 0 to –2. Therefore, the O.N. of O can only decrease in this case. Hence, O3 acts only as an oxidant.
In nitric acid (HNO3), the O.N. of N is +5 and the range of the O.N. that N can have is from +5 to –3. Therefore, the O.N. of N can only decrease in this case. Hence, HNO3 acts only as an oxidant.
9. Consider the reactions:
(a) 6 CO2(g) + 6H2O(l) → C6 H12 O6(aq) + 6O2(g)
(b) O3(g) + H2O2(l) → H2O(l) + 2O2(g)
Why it is more appropriate to write these reactions as:
(a) 6CO2(g) + 12H2O(l) → C6 H12 O6(aq) + 6H2O(l) + 6O2(g)
(b) O3(g) + H2O2 (l) → H2O(l) + O2(g) + O2(g)
Also suggest a technique to investigate the path of the above (a) and (b) redox reactions.
Answer:
(a) The process of photosynthesis involves two steps.
Step 1:
H2O decomposes to give H2 and O2.
2H2O(l) → 2H2(g) + O2(g)
Step 2:
The H2 produced in step 1 reduces CO2, thereby producing glucose (C6H12O6) and H2O.

Now, the net reaction of the process is given as:

It is more appropriate to write the reaction as given above because water molecules are also produced in the process of photosynthesis.
The path of this reaction can be investigated by using radioactive H2O18 in place of H2O.
(b) O2 is produced from each of the two reactants O3 and H2O2. For this reason, O2 is written twice.
The given reaction involves two steps. First, O3 decomposes to form O2 and O. In the second step, H2O2 reacts with the O produced in the first step, thereby producing H2O and O2.

The path of this reaction can be investigated by using \(H_2O_2^{18}\) or \(O^{18}_3\).
10. The compound AgF2 is an unstable compound. However, if formed, the compound acts as a very strong oxidizing agent. Why?
Answer:
The oxidation state of Ag in AgF2 is +2. But, +2 is an unstable oxidation state of Ag. Therefore, whenever AgF2 is formed, silver readily accepts an electron to form Ag+. This helps to bring the oxidation state of Ag down from +2 to a more stable state of +1. As a result, AgF2 acts as a very strong oxidizing agent.
11. Whenever a reaction between an oxidising agent and a reducing agent is carried out, a compound of lower oxidation state is formed if the reducing agent is in excess and a compound of higher oxidation state is formed if the oxidising agent is in excess. Justify this statement giving three illustrations.
Answer:
Whenever a reaction between an oxidising agent and a reducing agent is carried out, a compound of lower oxidation state is formed if the reducing agent is in excess and a compound of higher oxidation state is formed if the oxidising agent is in excess. This can be illustrated as follows:
(i) P4 and F2 are reducing and oxidising agents respectively. If an excess of P4 is treated with F2, then PF3 will be produced, wherein the oxidation number (O.N.) of P is +3.

However, if P4 is treated with an excess of F2, then PF5 will be produced, wherein the O.N. of P is +5.

(ii) K acts as a reducing agent, whereas O2 is an oxidising agent. If an excess of K reacts with O2, then K2O will be formed, wherein the O.N. of O is –2.

However, if K reacts with an excess of O2, then K2O2 will be formed, wherein the O.N. of O is –1.

(iii) C is a reducing agent, while O2 acts as an oxidising agent. If an excess of C is burnt in the presence of insufficient amount of O2, then CO will be produced, wherein the O.N. of C is +2.

On the other hand, if C is burnt in an excess of O2, then CO2 will be produced, wherein the O.N. of C is +4.

12. How do you count for the following observations?
(a) Though alkaline potassium permanganate and acidic potassium permanganate both are used as oxidants, yet in the manufacture of benzoic acid from toluene we use alcoholic potassium permanganate as an oxidant. Why? Write a balanced redox equation for the reaction.
(b) When concentrated sulphuric acid is added to an inorganic mixture containing chloride, we get colourless pungent smelling gas HCl, but if the mixture contains bromide then we get red vapour of bromine. Why?
Answer:
(a) In the manufacture of benzoic acid from toluene, alcoholic potassium permanganate is used as an oxidant because of the following reasons.
(i) In a neutral medium, OH– ions are produced in the reaction itself. As a result, the cost of adding an acid or a base can be reduced.
(ii) KMnO4 and alcohol are homogeneous to each other since both are polar. Toluene and alcohol are also homogeneous to each other because both are organic compounds. Reactions can proceed at a faster rate in a homogeneous medium than in a heterogeneous medium. Hence, in alcohol, KMnO4 and toluene can react at a faster rate.
The balanced redox equation for the reaction in a neutral medium is give as below:
