I = \(\int\limits_0^1x^3(log x)^3dx\)
let log x = -t ⇒ x = e-t
1/x dx = -dt
Limits converts info from t = -log (0) = -(-\(\infty\)) = \(\infty\)
to f = -log 1 = -0 = 0
∴ I = \(\int\limits_{\infty}^0e^{-4t}(-t)^3dt\) = \(-\int\limits_0^{\infty}t^3e^{-4t}dt\)
= \(\frac{\Gamma(4)}{4^4}\) ( ∵ \(\int\limits_0^{\infty}\)xn-1e-axdx = \(\frac{\Gamma(n)}{a^n}\), n = 4)
∴ \(\int\limits_0^1\)(x log x)3dx = 3/128