\(2sin2° + 4sin4° + 6sin6° + .... + 180sin180° \)
\(= {2sin2° + 4sin4° + 6sin6° + .... + 88sin88° + 90sin90° + 92sin92° \\+....+ 174sin174° + 176sin176° + 178sin178° + 180sin180°}\)
\(= {2sin2° + 4sin4° + 6sin6° + .... + 88sin88° + 90sin90° + 92sin88° \\+....+ 174sin6° + 176sin4° + 178sin2° + 180sin180°}\)
\(= 180sin2° + 180sin4° + 180sin6° +....+ 180sin88° + 90sin90° + 0\) \((\because sin180° = 0)\)
\(= 180(sin2° +sin4°+ sin6° +....+ sin88° ) + 90sin90° \)
\(= 180 \cfrac {sin\left(\frac{44\times 2}2\right)}{sin\left(\frac 22\right)} sin \left(2 + \frac{43}2 \times 2\right) + 90\)
\(\begin{pmatrix}\because sin\alpha + sin(\alpha + d) + sin(\alpha + 2d) \\+ ....+ sin(\alpha +(n -1)d)\\= \frac{sin\left(\frac{nd}2\right)}{sin\left(\frac d2\right)}sin\left(\alpha + \frac{(n - 1)d}{2}\right)\\Here \,\alpha= 2, d = 2, n = 44\end{pmatrix}\)
\(= 180 \frac {sin 44° \, sin45°}{sin1°} + 90\)
\(= \frac{180}{sin 1°} \times \frac 22 (cos(45° - 44°) - cos(45° + 44°)) +90\)
\(\left(\because sinA\,sin\,B = \frac 12 (cos(A - B) - cos(A + B))\right)\)
\(= \frac{90}{sin 1°} (cos 1° - cos89°) + 90\)
\(= \frac{90}{sin 1°} (cos 1° - cos(90° - 1° )) + 90\)
\(= \frac{90}{sin 1°} (cos 1° - sin1°) + 90\) \(\left(\because cos (90° - \theta) = sin\theta\right)\)
\(= 90 cot 1° - 90 + 90\)
\(= 90cot1° \)
Hence Proved.