The correct option (a) 0
Explanation:
f(x) = x∫0log[(1 – t)/(1 + t)]dt
f(1/2) – f[(– 1)/2]
= (1/2)∫0log[(1 – t)/(1 + t)]dt – [(–1)/2]∫0log[(1 – t)/(1 + t)]dt
= (1/2)∫0log[(1 – t)/(1 + t)]dt + 0∫[(–1)/2]log[(1 – t)/(1 + t)]dt
= (1/2)∫[(–1)/2]log[(1 – t)/(1 + t)]dt
Now log[(1 – t)/(1 + t)] is an odd function of t
∴ f(1/2) – f[(– 1)/2] = 0.