The correct option (b) c(a – 1)
Explanation:
I = c[a+c∫1+cf(cx)dx + a+c∫1+cdx] – ac∫cf(c2 + x)dx
put cx = c2 + t
hence
when x = c + 1
then t = c and
when x = a + c
then t = ac.
∴ I = c[ac∫cf(c2 + t)(dt/c)] + c[a + c – 1 – c] – ac∫cf(c2 + x)dx
= ac∫cf(c2 + t)dt – ac∫cf(c2 + x)dx + c(a – 1)
= c(a – 1).