The given equation is :
(a2 + b2)x2 + 2(ac + bd)x + (c2 + d2) = 0
Here, A = (a2 + b2), B = 2(ac + bd) and C = (c2 + d2)
⇒ B2 – 4AC = 0
⇒ 12(ac + bd)]2 – 4 × (a2 + b2) × (c2 + d2) = 0
⇒ 4(a2c2 + b2d2 + 2abcd) – 4(a2c2 + a2d2 + b2c2 + b2d2) = 0
⇒ 4a2c2 + 4b2d2 + 8abcd – 4a2c2 – 4a2c2 – 4b2c2 – 4b2d2 = 0
⇒ – 4a2d2 – 4b2c2 + 8abcd = 0
⇒ – 4 (a2d2 + b2c2 – 2abcd) = 0
⇒ – 4(ad – bc)2 = 0
Since ad ≠ bc = 0 Therefore D < 0
Hence, the equation has no real roots.