x2(a2 + b2) + 2x(ac + bd) + (c2 + d2)= 0
d = b2 – 4ac
d = (2ac + 2bd)2 – 4 (a2 + b2) (c2 + d2)
d = 4a2c2 + 4b2d2 + 8abcd – 4 [a2 (c2 + d2) + b2 (c2+d2)]
d = 4a2c2 + 4b2d2 + 8abcd – 4 [a2c2 + a2d2 + b2c2 + b2d2]
d = 4a2c2 + 4b2d2 + 8abcd – 4a2c2 – 4a2d2 – 4b2c2 – 4b2 d2
d = 8abcd – 4a2d2 – 4b2c2
d = 8abcd – 4(a2d2 + b2 c2)
d = –4 (a2 d2 + b2c2 – 2abcd)
d = –4 [(ad + bc)2]
For ad ≠ bc
d= –4 × [value of (ad + bc)2]
∴ d is always negative
So, d < 0
The given equation has no real roots.