Let \(x^\frac{3}{2}\) = t
⇒ \(\frac{3}{2}\)\(x^\frac{3}{2}\)dx
∫\(\sqrt\frac{x}{1\ -\ x^3}\)dx
= \(\frac{2}{3}\)∫\(\frac{dt}{\sqrt{1\ -\ t^2}}\)
= \(\frac{2}{3}\) sin-1(t) + c
= \(\frac{2}{3}\)sin-1\((x^\frac{3}{2})\) + c, where 'c' is an arbitrary constant of integration.