We have, f(x) = \(\begin{cases}\frac{x}{1+x},if\ x\ge0\\\frac{x}{1-x},if\ x<0\end{cases}\)
Now, we consider the following cases
Case 1: when x \(\ge\) 0 , we have f(x) = \(\frac{x}{1+x}\)
Injectivity: let x, y ∊ R+ ∪ {0} such that f(x) = f(y), then

⇒ x - xy = y + xy ⇒ x - y = 2xy, here LHS > 0 but RHS < 0, which is inadmissible.
Hence , f(x) ≠ f(y) when x ≠ y.
Hence f is one-one and onto function.