Correct options are (A), (B) and (C)

\(r =|\cos \theta|\)
\(r = \sqrt{(x - 0)^2 +(y - 0)^2 }\)
\(= \sqrt{x^2 + y^2}\)
\(\cos \theta = \frac{OM}{OP} = \frac xr = \frac{x}{\sqrt{x^2 + y^2}}\)
\(r = \sqrt{x^2 + y^2} =\left |\frac x{\sqrt {x^2 + y^2}}\right|\)
\(\sqrt{x^2 + y^2} = \frac x{\sqrt{x^2 + y^2}}\)
⇒ \(x^2 + y^2 = x\)
⇒ \(x^2 + y^2 - x =0\)
centre = \((\frac 12,0)\)
rad = 1/2
\(\sqrt{x^2 + y^2} = \frac {-x}{\sqrt{x^2 + y^2}}\)
⇒ \(x^2 + y^2 = -x\)
⇒ \(x^2 + y^2+ x =0\)
centre = \((-\frac 12,0)\)
rad = 1/2
