Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
147 views
in Physics by (39.0k points)
closed by

Justify, as well as you can, the following statement:

"In the system of two ground state H atoms, there are three repulsive states and one attractive (bound) state.”

1 Answer

+1 vote
by (39.4k points)
selected by
 
Best answer

In the adiabatic approximation, when discussing the motion of the two electrons in the two H atoms we can treat the distance between the nuclei as fixed and consider only the wave functions of the motion of the two electrons. For total spin S = 1, the total spin wave function is symmetric for interchange of the two electrons and so the total space wave function is antisymmetric. Pauli's principle requires the electrons, which in this case have parallel spins, to get away from each other as far as possible. This means that the probability for the two electrons to come near each other is small and the states are repulsive states. As S = 1 there are three such states. For total spin S = 0, the space wave function is symmetric. The probability of the electrons being close together is rather large and so the state is an attractive one. As S = 0, there is only one such state.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...