We need to find the maximum value of u = cos x cos y cos z subject to the condition x + y + z = π
Let F = cos x cos y cos z + λ (x + y + z)
We form the equations Fx = 0, Fy = 0, Fz = 0
i.e., – sin x cos y cos z + λ = 0
– cos x sin y cos z + λ = 0
– cos x cos y sin z + λ = 0
or λ = sin x cos y cos z
λ = cos x sin y cos z
λ = cos x cos y sin z
Now, sin x cos y cos z = cos x sin y cos z = cos x cos y sin z
From the first pair, we have
sin x cos y = cos x sin y
i.e., sin x cos y – cos x sin y = 0
i.e., sin (x – y)=0 ⇒ x – y = 0
or x = y
similarly from the other pairs, we get
y = z and z = x
Combining these we have x = y = z
But x + y + z = λ
x + x + x = π
or x = π/3
Hence x = y = z = π/3
∴ The maximum value of
cos x cos y cos z = cos3x, where x = π/3
Thus, we have cos3(π/3) = (1/2)3 = 1/8·