सिद्ध कीजिए कि \(\overrightarrow{a}\times\) \((\overrightarrow{b}\times\overrightarrow{c})\) ≠ \((\overrightarrow{a}\times\overrightarrow{b})\times c\) यदि
(i) \(\overrightarrow{a}\) = \(2\hat{i} + 5\hat{j} - 7\hat{k}\), \(\overrightarrow{b}\) = \(-3\hat{i} + 4\hat{j} + \hat{k}\), \(\overrightarrow{c}\) = \(-\hat{i} - 2\hat{j} - 3\hat{k}\)
(i) \(\overrightarrow{a}\) = \(2\hat{i} + 3\hat{j} - 5\hat{k}\), \(\overrightarrow{b}\) = \(-\hat{i} + \hat{j} + \sqrt{2}\hat{k}\), \(\overrightarrow{c}\) = \(4\hat{i} - 2\hat{j} + \sqrt{3}\hat{k}\)