Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
157 views
in Mathematics by (36.2k points)
closed by

p के मान ज्ञात करें जिससे रेखाएँ \(\frac{11-x}{p}=\frac{3 y-3}{2}=\frac{17-z}{5}\) और \(\frac{x-22}{3 p}=\frac{2 y-7}{27 p}=\frac{z-100}{6 / 5}\) परस्पर लंब हो।

1 Answer

+1 vote
by (35.1k points)
selected by
 
Best answer

दिया है- रेखाएँ \({L}_1: \frac{11-x}{p}=\frac{3 y-3}{2}=\frac{17-z}{5}\)    .....(i)

और \({L}_2: \frac{-22}{3 p}=\frac{2 y-7}{27 p}=\frac{z-100}{6 / 5}\)       ......(ii)

समीकरण (i) से हम पाते हैं 

\(\frac{x-11}{p}=\frac{y-1}{2 / 3}=\frac{z-17}{5}\)    ......(a)

पुनः समीकरण (ii) से हम पाते हैं

\(\frac{x-22}{3 p}=\frac{y-7 / 2}{27 p / 2}=\frac{z-100}{6 / 5}\)    ......(b)

समीकरण (a) और (b) का मान रखने पर,

\(\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}\)

समीकरण (a) से,

\(a_1=p, b_1=2 / 3, c_1=5\)

समीकरण (b) से,

\(a_2=3 p, b_2=27 p / 2, c_2=6 / 5\)

अब, प्रश्नानुसार यदि दोनों रेखाएँ लंबवत् है तो

\(a_1 a_2+b_1 b_2+c_1 c_2=0\)

\(\Rightarrow p \cdot 3 p+\frac{2}{3} \cdot \frac{27 p}{2}+5 \cdot \frac{6}{5}=0\)

\(\Rightarrow 3 p^2+9 p+6=0\)

\(\Rightarrow 3 p^2+6 p+3 p+6=0\)

\(\Rightarrow 3 p(p+2)+3(p+2)=0\)

\(\Rightarrow (p+2)(3 p+3)=0\)

\(\therefore p = -2, -1\)

अत: p का मान (-2, -1) है।

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...