Given the equation,
(11 - x)/p = (3y - 3)/2 = (17 - 2)/5 ...(i)
(x - 11)/-p = (y - 1)/(2/3) = (2 - 17)/-5
(Middle term dividing numerator denominator by 3)
Again linear equation,
(x - 22)/3p = (2y - 7)/(2 + p) = (2 - 100)/(6/5)
(x - 22)/3p = (y - (7/2))/((2 + p)/2) = ((2 - 100)/(6/5) ...(ii)
line (i) and (ii) perpendicular if
a1a2 + b1b2 + c1c2 = 0
-p(3p) + (2/3) x (27p/2) + (-5 x (6/5)) = 0
-3p2 + 9p - 6 = 0
3p2 - 9p + 6 = 0 (take sign common)
3p2 - 6p - 3p + 6 = 0
3p(p - 2) - 3(p - 2) = 0
(p - 2) (3p - 3) = 0
when p - 2 = 0 then p = 2
when 3p - 3 = 0
then 3p = 3
p = 3/3 = 1
p = 1
∴ p = 1, 2