Correct option is (4) \(\log _{\frac{4}{3}} 2\)
\(\frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{ax}=0\)
\(\frac{\mathrm{dx}}{\mathrm{x}}=-\mathrm{adt}\)
\(\int \frac{\mathrm{dx}}{\mathrm{x}}=-\mathrm{a} \int \mathrm{dt}\)
\(\ln |\mathrm{x}|=-\mathrm{at}+\mathrm{c}\)
at \(\mathrm{t}=0, \mathrm{x}=2\)
\(\ln 2=0+\mathrm{c}\)
\(\ln \mathrm{x}=-\mathrm{at}+\ln 2\)
\(\frac{\mathrm{x}}{2}=\mathrm{e}^{-\mathrm{at}}\)
\(\mathrm{x}=2 \mathrm{e}^{-\mathrm{at}} \quad....(i)\)
\(\frac{\mathrm{dy}}{\mathrm{dt}}+\mathrm{by}=0\)
\(\frac{\mathrm{dy}}{\mathrm{y}}=-\mathrm{bdt}\)
\(\ln |y|=-b t+\lambda\)
\(\mathrm{t}=0, \mathrm{y}=1\)
\(0=0+\lambda\)
\(\mathrm{y}=\mathrm{e}^{-\mathrm{bt}} \quad ....(ii)\)
According to question
\(3 \mathrm{y}(1)=2 \mathrm{x}(1)\)
\(3 \mathrm{e}^{-\mathrm{b}}=2\left(2 \mathrm{e}^{-\mathrm{a}}\right)\)
\(\mathrm{e}^{\mathrm{a}-\mathrm{b}}=\frac{4}{3}\)
For \(\mathrm{x}(\mathrm{t})=\mathrm{y}(\mathrm{t})\)
\(\Rightarrow 2 \mathrm{e}^{-\mathrm{at}}=\mathrm{e}^{-\mathrm{bt}}\)
\(2=\mathrm{e}^{(\mathrm{a}-\mathrm{b}) \mathrm{t}}\)
\(2=\left(\frac{4}{3}\right)^{t}\)
\(\log _{\frac 43} 2=\mathrm{t}\)